## Reg. No:

$\square$

## SIDDHARTH INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech II Year I Semester Regular \& Supplementary Examinations March-2023 MECHANICS OF SOLIDS
(Common to ME \& AGE)
Time: 3 hours
(Answer all Five Units $5 \times 12=60$ Marks)
UNIT-I
1 Determine the diameter of a bolt which is subjected to an axial pull of 9 KN together with a transverse shear force of 4.5 KN using :
(i) Maximum principal stress theory.
(ii) Maximum principal strain theory.
(iii) Maximum shear stress theory.
(iv) Maximum strain energy theory.

Given the elastic limit in tension $=225 \mathrm{~N} / \mathrm{mm}^{2}$, factor of safety $=3$ and Poisson's ratio $=0.3$.

## OR

2 a Draw and explain Stress-strain curve for a mild steel bar.
b Explain maximum shear strain energy theory.
3 a Derive the simple bending equation.
b A beam is simply supported and carries a uniformly distributed load of 40
$\mathrm{KN} / \mathrm{m}$ run over the whole span. The section of the hewn is rectangular
having depth as 500 mm . If the maximum stress in the material of the beam is
$120 \mathrm{~N} / \mathrm{mm}^{2}$ and moment of inertia of the section is $7 \times 10^{8} \mathrm{~mm}^{4}$, find the span
of the beam.

## OR

4 a Derive section modulus for rectangular section.
b A beam 500 mm deep of a symmetrical section has $\mathrm{I}=1 \times 10^{8} \mathrm{~mm}^{4}$ and is simply supported over a span of 10 m . Calculate:
(i) The uniformly distributed load it may carry if the maximum bending stress is not to exceed $150 \mathrm{~N} / \mathrm{mm}^{2}$.
(ii) The bending stress if the beam carries a central point load of 25 KN .

## UNIT-III

5 a Derive shear stress distribution formula for rectangular section with a neat sketch.
b A timber beam of rectangular section is simply supported at the ends and CO3 L3 6M carries a point load at the centre of the beam. The maximum bending stress is $12 \mathrm{~N} / \mathrm{mm}^{2}$ and maximum shearing stress is $1 \mathrm{~N} / \mathrm{mm}^{2}$, find the ratio of the span to the depth.

## OR

6 a State the difference between twisting moment and bending moment.
CO3 L1
6M
b A solid steel shaft has to transmit 75 KW at 200 r.p.m. Taking allowable shear stress as $70 \mathrm{~N} / \mathrm{mm}^{2}$, find suitable diameter for the shaft, if the maximum torque transmitted at each revolution exceeds the mean by $30 \%$.

## UNIT-IV

7 a Write the assumptions made in the Euler's column theory.
b Write the end conditions for long columns and state the difference between long Columns and short columns.

## OR

8 A beam of uniform rectangular section 200 mm wide and 300 mm deep is simply supported at its ends. It carries a uniformly distributed load of $9 \mathrm{KN} / \mathrm{m}$ run over the entire span of 5 m . If the value of $E$ for the beam material is $1 \times 10^{4}$ $\mathrm{N} / \mathrm{mm}^{2}$, find :
(i) The slope at the supports and
(ii) Maximum deflection.

## UNIT-V

9 a Derive expression for circumferential stress in thin cylinder.
b A cylindrical pipe of diameter 1.5 m and thickness 1.5 cm is subjected to an internal fluid pressure of $1.2 \mathrm{~N} / \mathrm{mm}^{2}$. Determine:
i) Longitudinal stress developed in the pipe, and
ii) Circumferential stress developed in the pipe.

10 a A cylinder of thickness 1.5 cm has to withstand maximum internal pressure of $1.5 \mathrm{~N} / \mathrm{mm}^{2}$. If the ultimate tensile stress in the material of the cylinder is $300 \mathrm{~N} / \mathrm{mm}^{2}$, factor of safety 3.0 and joint efficiency $80 \%$, determine the diameter of the cylinder.
b A spherical shell of internal diameter 0.9 m and of thickness 10 mm is subjected to an internal pressure of $1.4 \mathrm{~N} / \mathrm{mm}^{2}$. Determine the increase in diameter and increase in volume. Take $\mathrm{E}=2 \mathrm{X} 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$ and $\mu=1 / 3$.
*** END ${ }^{* * *}$

