	Q.P. Code: 20CE0164										R				
	a 1	Reg. No:			100.00		· <u>%</u> O								
	9						ng 100				101.00.200	Diata	19991		
		SIDDHART	TH INST	ritu	TE C	OF E	NGINE	ERIN	IG &	TECH	NOLOG	Y:: P	PUTTU	R	
		R Tech II Yea	r I Som	oeto	r Roo	A) elun	r & Su	DMOU	JS)	ry Eva	minatic	ne M	larch-2	023	
		D. reen n rea	i i Geini	COLC	M	ECH	IANICS	OFS			mmauc	113 1		.023	
					()	Com	mon to	ME &	AGE)					
	Time: 3 hours									Max. Marks: 60					
				(A	nswe	r all	Five U	nits 5 :	x 12 =	= 60 Ma	urks)				
1	Г	etermine the diam	neter of	a ho	lt wh	nich	is subie	ected	to an	avial r	ull of 9	KN	CO1	13	12M
1	together with a transverse shear force of 4.5 KN using .									IXI (GOI	LU	12111		
	(i	(i) Maximum principal stress theory.													
	(i	i) Maximum princi	ipal strai	n the	eory.										
	(i	(iii) Maximum shear stress theory.													
	(i	v) Maximum strain	n energy	theo	ory.										
	G	Given the elastic lim	nit in ter	ision	= 22	5 N/:	mm², fa	ctor o	f safe	ty = 3 a	nd Poiss	on's			
	ra	atio = 0.3.													
								OR	all in				Liunius		
2	a	Draw and explain	Stress-s	train	curv	e foi	r a mild	steel	bar.				CO1	L1	6M
	b	Explain maximum	n shear s	train	ener	gy tł	neory.		faib				COI	L2	6M
							U	IIT-II							
3	a	Derive the simple	bending	g equ	ation	l.		na kata n	for of	कहाँ तम	ić Lasc	logis	CO3	L2	6M
	b	A beam is simply	suppor	ted a	and c	arrie	es a un	iforml	y dist	tributed	d load of	f 40	CO3	L3	6M
		KN/m run over the whole span. The section of the hewn is rectangular									ular				
		120 N/mm ² and	00 mm.		e max	amu	m stres		le mat	erial of	t the bear	m 1s			
		120 N/mm ² and m	oment o	or ine	rtia c	or the	e sectio	n 15 /	x 10°	mm ⁺ , f	ind the s	pan			
		of the beam.						OR							
4	а	Derive section mo	dulus fo	r rec	tano	ilar	section	OK					CO3	12	4 M
1	h	A beam 500 mm	deen of	asv	mme	tricz	al section.	n has	I = 1	x 10 ⁸	mm ⁴ an	d is	CO3	LZ L3	8M
	U	simply supported over a span of 10 m Calculate.									a 10	900	ЦО	OW	
		(i) The uniformly distributed load it may carry if the maximum bending stress										ress			
		is not to exceed15	0 N/mm	2			,,								
		(ii) The bending stress if the beam carries a central point load of 25 KN													
		., 0					UN	IT-III]						
5	a	Derive shear stress sketch.	ss distril	butio	n for	mul	a for re	ectang	ular s	ection	with a 1	neat	CO3	L1	6M
	b	A timber beam o	of rectan	gula	r sect	tion	is simp	ly su	pporte	ed at tl	he ends	and	CO3	L3	6M
		carries a point loa	d at the	cent	re of	the	beam. T	he ma	aximu	m ben	ding stre	ss is			
		12 N/mm ² and ma	iximum	shear	ring s	tress	s is 1 N/	mm²,	find t	he ratio	o of the s	span			
		to the depth.													

Q.P. Code: 20CE0164

L1

L3

6M

6M

CO₃

OR

- 6 a State the difference between twisting moment and bending moment.
 - b A solid steel shaft has to transmit 75 KW at 200 r.p.m. Taking allowable shear CO3 stress as 70 N/mm², find suitable diameter for the shaft, if the maximum torque transmitted at each revolution exceeds the mean by 30%.

UNIT-IV

7	a	Write the assumptions made in the Euler's column theory.	CO5	L2	4 M
	b	Write the end conditions for long columns and state the difference between	CO5	L2	8 M
		long Columns and short columns.			

OR

- 8 A beam of uniform rectangular section 200 mm wide and 300 mm deep is CO4 L3 12M simply supported at its ends. It carries a uniformly distributed load of 9 KN/m run over the entire span of 5 m. If the value of E for the beam material is 1 x 10⁴ N/mm², find :
 - (i) The slope at the supports and
 - (ii) Maximum deflection.

UNIT-V

- 9 a Derive expression for circumferential stress in thin cylinder.
 b A cylindrical pipe of diameter 1.5m and thickness 1.5cm is subjected to an CO6 L3 6M internal fluid pressure of 1.2 N/mm². Determine:
 - i) Longitudinal stress developed in the pipe, and
 - ii) Circumferential stress developed in the pipe.

OR

- 10 a A cylinder of thickness 1.5cm has to withstand maximum internal pressure of CO6 L3 6M 1.5N/mm². If the ultimate tensile stress in the material of the cylinder is 300N/mm², factor of safety 3.0 and joint efficiency 80%, determine the diameter of the cylinder.
 - b A spherical shell of internal diameter 0.9m and of thickness 10mm is CO6 L3 6M subjected to an internal pressure of 1.4 N/mm². Determine the increase in diameter and increase in volume. Take $E=2X10^5$ N/mm² and $\mu=1/3$.

*** END ***